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center or not. On the other hand, the pattern does not 
show any difference for the diffraction groups 3 and 6 
which have different vertical rotation axes. The 
diffraction group 3m cannot be distinguished from the 
groups 3 and 6 or from the group 6mm in either setting 
of two possible settings (see columns 1, 4, 6 and 10 of 
Table 3). However, it is found that most diffraction 
groups can be identified from one photograph, which 
makes a strong contrast to the method of Buxton et al. 
This fact is very important from an experimental 
viewpoint because symmetries obtained by comparing 
two photographs are unreliable in critical cases, as the 
photographs may be taken from different specimen 
areas. In the square four-beam case, the fourfold rotary 
inversion (~,) produces the symmetry 4 R in the disks F 
and F' .  The inversion center itself does not exhibit any 
specific symmetry in a SMB setting, but its effect 
appears through the horizontal mirror plane which is 
automatically introduced when the inversion center is 
added to the vertical twofold axis (see the third row of 
Table 4). It is emphasized that all seven diffraction 
groups can be identified from one square four-beam 
pattern. In the rectangular four-beam case, the in- 
version center not only directly but also indirectly 
produces no specific symmetry. The rectangular 
four-beam pattern cannot distinguish the diffraction 
groups m and 2mm, since they differ only in two- 
dimensional symmetry elements. The diffraction group 
m R has only a horizontal twofold axis. The 2Rmm R has 
a vertical mirror (m v) and the inversion center (i) as 
well as the horizontal twofold axis. These two groups, 
however, cannot be distinguished from one rectangular 
pattern, since the pattern is insensitive to my and i. On 
the other hand, a rectangular four-beam pattern can 
distinguish the diffraction groups m and 2Rmm R and 
2mm and 2mml R, whereas the method of Buxton et al. 

requires two or three photographs to identify the 
groups, because the zone-axis pattern is insensitive to 
three-dimensional symmetry elements. A rectangular 
four-beam setting is also possible for the diffraction 
groups in which hexagonal six-beam setting or square 
four-beam setting was considered. Symmetries of such 
a rectangular four-beam pattern can be understood by 
finding the symmetry elements active to the pattern out 
of all the elements of the diffraction groups. 

When a pair of symmetrical many-beam patterns are 
taken, all the diffraction groups are completely identi- 
fied. For practical purposes, however, the use is 
recommended of a symmetrical many-beam pattern 
and the zone-axis pattern, since two-dimensional 
symmetries are found very easily in the zone-axis 
pattern. In conclusion, we emphasize again that the 
symmetrical many-beam method is quite an effective 
method to determine the point groups of crystals. 
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Abstract 

Translation functions are used to determine the position 
of a correctly oriented molecular fragment. Usually, 
translation functions are defined for the Patterson 
space. A new translation function is presented, which is 

0567-7394/83/030368-09501.50 

defined as a convolution in electron-density space, and 
expressed as a Fourier synthesis. After expansion of the 
reflection data to space group P1, coefficients for the 
synthesis are obtained by direct methods on difference 
structure factors (the DIRDIF procedures). From the 
position of the maximum in the translation function, the 
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position of the known fragment relative to symmetry 
elements can be obtained. The new translation func- 
tion provides a fast and reliable method for the 
positioning of a correctly oriented fragment, if the 
fragment constitutes at least about 10% of the total 
scattering power of the primitive unit cell. The 
procedure has been automated in the computer 
program TRADIR. Examples of applications on known 
and unknown structures are given. 

1. Introduction 

Often the orientation of a molecular fragment with 
respect to the crystal axes is known. Usually these 
fragments are determined by one of two important 
methods: 
Orientation search methods in Patterson space 
(Braun, Hornstra & Leenhouts, 1969; Crowther, 1972; 
Nordman & Schilling, 1970; Schilling, 1970). 
A priori direct methods. Routine application of direct 
methods will often lead to an E map in which large 
parts of the molecule can be recognized. However, 
systematic phase errors may cause the fragment to be 
in a correct orientation but in a wrong position (Silva & 
Viterbo, 1980). 

The next step in these known-orientation-unknown- 
origin cases (in all space groups but P1) is the 
determination of the translation vector, which, upon 
application, will position the fragment correctly with 
respect to the symmetry elements of the sapce group. 
This can be achieved by: 

A. Translation functions, which may be designated as 
'Patterson' techniques, and which are measured to fit 
in: 
Vector space (match between model and observed 
Patterson map; Braun, Hornstra & Leenhouts, 1969; 
Huber, 1965; Nordman & Nakatsu, 1963). 
Intensity space (correlation between calculated and 
observed intensities; Tollin, 1966; Crowther & Blow, 
1967; Langs, 1975; Karle, 1972; Beurskens, 1981). 

B. Methods based on direct methods. 
The phases derived from a known fragment can be 

recycled in space group P1 with a (modified) tangent 
formula (Karle, 1968), to ebtain an E map in space 
group P1. 

A similar approach, using difference structure 
factors, was applied by Beurskens, Van den Hark & 
Beurskens (1976), using the DIRDIF procedures 
(DIRect methods on DIFference structure factors; Van 
den Hark, Prick & Beurskens, 1976), again in P1. (The 
resulting Fourier map is called a DIRDIF Fourier 
map.) 

A careful examination of the Fourier map in space 
group P1, based on the correctly oriented fragment, 
may lead to the recognition of symmetry-dependent 

fragments (which are related to the input fragment by 
symmetry elements at unknown positions in the cell). 

The problems arising in the application of A 
('Patterson' translation functions) are mainly due to 
considerable overlap in the Patterson map. The 
problems arising from B (based on direct methods) are 
mainly due to difficulties in the interpretation of the P1 
Fourier map. 

Recently, we introduced a new method to determine 
the position of the molecular fragment (Doesburg & 
Beurskens, 1981): we defined the 'strengthened' trans- 
lation functions as translation functions in DIRDIF 
Fourier space. The functions do not depend on finding 
individual atoms but rather measure the match of 
unidentifiable peaks in the DIRDIF P1 Fourier map 
with a known search model. The method may therefore 
be considered as a powerful combination of the 
computational tools designed for methods A and B. 

The present translation functions can also be applied 
to conventional difference Fourier maps (using AF's, 
based only on the known model); the application of 
DIRDIF, however, leads to a significant improvement 
of phases as well as amplitudes of the structure factors 
of the difference structure. This improvement is 
especially important when only a small fraction of the 
structure is initially known. 

2. Definition of the strengthened translation function 

With the rotation matrix R s and the translation vector t s 
of the symmetry operation s, symmetry-dependent 
positions rs in any space group are given by 

r s = R s r + ts, (1) 

r~, r are column vectors, r is an arbitrary positional 
vector. 

The symmetry-related reflections h~ are defined as 

h s =  ~ ,  (2) 

h s, h are row vectors. 
Reflections h~ obey 

iF(hs)l = IF(h)l (2:1) 

~0(hs) = 2nh.t s + ¢(h). (2B) 

Usually only symmetry-independent reflections are 
available: reflections h~ are generated with (2) (ex- 
cluding Friedel-related and identical reflections) and are 
assigned an observed structure factor: 

IFobs(hs)l = IFobs(h)l. 
After this expansion of the data, the symmetry elements 
are discarded, the reflections h and h~ are considered to 
be symmetry independent, and we have a 'sym- 
metry-reduced' space group which is either P1 or a 
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lattice-centered equivalent for non-primitive space 
groups. 

Let {rp } be the set of atomic positions of the known 
fragment with correct orientation (p = partial struc- 
ture). Phases and amplitudes Fp(h) for this fragment 
can be calculated in the symmetry-reduced space 
group: 

Fp(h) = Y fjexp [2m'h. (rp)j]. 
J 

Y j includes all atoms of the partial structure. Fp(h) is 
calculated for all reflections h and h~ because relations 
(2A) and (2B) are not applicable in the symmetry- 
reduced space group. 

Let pp be the electron-density function of a molec- 
ular fragment which is correctly oriented in the cell 
and, consequently, correctly positioned in the triclinic 
non-centrosymmetric space group: 

1 
pp(r) = -~- Z Fp(h) exp ( -2mh.  r). (3) 

/i 

The summation over h in (3) includes the generated 
reflections h s. The difference structure (the rest of the 
structure in the symmetry-reduced space group being 
the entire contents of the unit cell minus the input 
fragment) is expressed by the Fourier series 

1 
Pr(r) = - ~  ~ Fr(h) exp (--2n/h.r). (4) 

h 

The coefficients Fr(h), which are the structure factors of 
the difference structure, are not known, and p~ cannot 
be calculated. For a conventional difference-Fourier 
map F~(h) is replaced by AF(h), based on the input 
fragment. The DIRDIF-refined coefficients, also de- 
noted F~(h), are a far better approximation for the true 
structure factors of the difference structure, and they 
can be used in (4) for the calculation of a DIRDIF 
Fourier map, now denoted p~. 

This difference-electron-density function pr does 
contain the molecular fragments which are related to 
the input fragment Pr by the symmetry elements of the 
true space group; the symmetry elements, however, are 
at unknown positions (relative to the position of the 
input fragment). 

The symmetry-related fragments are now used as a 
search model in the DIRDIF Fourier space. This 
search model Pus is defined, for any symmetry element, 
a s  

pps(rs) = pp(r). (5) 

Thus each search model is defined as a result of 
applying on pp the symmetry operators Rs and t s, where 
s runs from 2 to n, with n = total number of symmetry 
operations. The search model can, in principle, be 

calculated by 
1 

p;s(r) = T ~ F;s(h) exp (-2"z~. r). 
h 

In this expression, Fps is defined as 

(6) 

Gs(h) = Y f:exp [2=ih. (r,):] 
J 

for given s. Summation overj  is over symmetry-related 
atomic positions r,. Using (1) and (2), we obtain 

Fps(h ) = Fp(hs) exp (2zdh. ts). (7) 

Analogously to translation search methods in Patter- 
son space, Pps is translated, now in the DIRDIF Fourier 
space, to find the maximum fit with the rest structure. 
From the coordinates of the resulting vector, the 
translation vector t o can be obtained. 

A general translation function is defined by Argos & 
Rossmann (1980); for our purpose we define this 
translation function Q~(q) as a measure of fit for Pps in 

Pr: 

Qs(q) = f Pps( r - q) Pr(r) dr. (8) 
unit cell 

Qs(q) will be maximal for exact coincidence of Pps and 

Pr at q = q0. 
After substitution of (6) and (4) into (8) and 

integrating term by term, the result is 

1 
Qs(q) = -V Z F~s(h)Fr(h)exp(-2mh'tO' (9) 

h 

where F* is the complex conjugate of F. Equation (9) 
can also be derived by considering it to be the 
convolution of two electron-density functions. The 
functions to be convoluted are the rest structure, ,Or, 

and the inverted search fragment P~s. According to 
properties of convolutions, this will give, in reciprocal 
space, a multiplication of the Fourier coefficients of the 
two electron-density functions, which is identical to (9). 
This expression is used for the actual calculation of the 
translation functions. It can simply be evaluated by 
standard fast Fourier transform (FFT) techniques. For 
all reflections partial structure factors Fp(h) are 
calculated. For a given symmetry operation s, trans- 
formation (7) readily gives Fps(h) values for all 
reflections. The DIRDIF results [refined Fr(h) values] 
are not used as coefficients for the calculation of a 
DIRDIF Fourier map, but are multiplied by F*s(h), 
which, after Fourier transformation, leads to the 
translation function for the specified symmetry ele- 
ment. The DIRDIF  refinement is executed only once: 
the calculation of Q(q) is repeated for each of the 
(n - l) symmetry elements. 
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Note: A perfect overlap of a search model with a 
completely correct rest structure will lead to 

1 
a(qo) = --~ ~ I Fp(h) 12= ao. 

h 

A relative measure of fit is defined as Q(q)/Qo. 

3. T h e  t r a n s l a t i o n  v e c t o r  t o 

The desired translation vector to, over which the 
original set of atomic coordinates {rp } is to be shifted, is 
related to qo in a symmetry-dependent way. If the set 
{r 0 } is the correctly located set, the next equation holds 
for corresponding positions in the two sets: 

r o = rp + t o. ( 10 )  

The position of the true-symmetry-related set {r s } (not 
identical to the atomic positions of pp~) is defined by 

rs = Rs r0 + ts = Rs(r v + t 0) + t s. (11) 

Application of DIRDIF in P1 on the basis of {rp} will 
yield a set of positions {r~}, which contains subsets of 
correctly oriented symmetry-related fragments {r s }. A 
shift over to will superimpose these sets: 

r~ = r~ + to. (12) 

Equation (12) is the symmetry-related analogon of 
(I0). 

Equating (I I )and (12)gives 

Rsrp + t s = L  + ( I - -  R) t 0, (13) 

where I is the unity matrix. Interpretation of (13) in 
terms of the electron-density functions defined in § 2 
tells us that the left-hand side of (13) represents pps, and 
that {r r } constitutes Pr The last term of (13) with a 
minus sign thus gives the expected position qo of the 
maximum of Q~(q), when the model and structure 
exactly overlap: 

qo = --(I--  Rs) t o. (14) 

From (14) three components of to can be determined if 
R s is the rotation matrix for inversion or rotation- 
inversion. In the case of a rotation of screw axis the 
component in the direction of the axis is undetermined. 
Mirror or glide planes only allow the determination of 
one component of t o , perpendicular to the plane; the 
other two components are undetermined. An unknown 
component of t o may become available from the Q map 
for a different symmetry element. If only one twofold 
symmetry element (2, 21, m, a, b, c, n) is present (e.g. 
P2~, Pc) the model can be translated freely in one or 
two directions with undetermined components. In such 
space groups the undetermined components are as- 
signed an arbitrary value of zero. For triclinic, 

monoclinic and orthorhombic space groups each 
translationvector to can be reduced modulo rl ~ ~. 

• ~ ,3 ,  3 ,  3 / .  

to -- [Xo(mod ½), Y0(mod k), Z0(mod ½)]. (15) 

This reduction describes eight possible vectors (0 or ½, 
in three directions) that correspond merely to a shift of 
the coordinate system from one permissible origin to 
another (see Hauptman, 1972). In, say, P21, (15) takes 
the form 

t o = [X0(mod ½), 0, Z0(mod ½)]. 

For space groups with symmetry higher than ortho- 
rhombic, the additional translational symmetry can be 
determined according to the rules given by Hall (1970) 
and is contained implicitly in International Tables for 
X-ray Crystallography (Karle, 1974). For example, in 
P3 I, (15) becomes to=  [X0(mod ½), Y0(mod ~), 0], with 
the condition that X0(mod }) - 2 Y0(mod ~). 

4.  T h e  TRADIR p r o c e d u r e  

In this section we will briefly describe the TRADIR 
(TRAnslation function in DIRdif Fourier space) 
procedure. After expansion of the reflection data, the 
normal DIRDIF facilities are used as in space group 
P1. After the determination of scaling and separate 
temperature factors for partial and rest structure, 
pseudo-normalized structure factors E l are defined as 
the normalized equivalent of the conventional differ- 
ence structure factors (IFobsl -- IFpl) exp itpp (see 
Beurskens, Prick, Doesburg & Gould, 1979). By using 
E I values and phases as input to a weighted tangent 
refinement procedure, new reliable indications for the 
phases of the rest structure factors are obtained. 
Accordingly, I Frl values are calculated by the vector 
relationship: Fob s = Fp + I Frl exp (itPr). The resulting 
phased F r values are stored for the calculations of the 
Fourier coefficients given in (9). Now, the position of 
the input fragment has to be determined relative to 
(n - 1) symmetry elements. Accordingly, (n - 1) 
summations of type (9) have to be calculated and 
resulting Q maps interpreted. The Q map for a centre of 
symmetry or for a 3 or 4 axis has three-dimensional 
character, because the position of the inversion centre 
has to be fixed in three directions. In the case of n-fold 
rotation or screw axis, only two components for t o need 
to be determined. For mirror- and glide-plane opera- 
tions, a one-dimensional Fourier summation will 
suffice. This reduction of the problem of finding t o is 
also noticed in Patterson-search translation functions 
(sum function; Tollin, 1970). 

In the present procedure each of the (n - 1) Q maps 
is searched for peak maxima. As it is expected that 
small partial structures will lead to Q maps in which the 
strongest peak may not represent to, several peaks are 
collected from each of the Q maps. The coordinates of 
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the peaks in the respective maps are reduced to 
components of t o by the use of (14). After all searches 
have been completed, it is attempted to combine the 
various indications for the components of t o resulting 
from the (n - 1) searches into one, if possible, 
three-dimensional vector, which is consistent in its 
components for each of the searches (see § 5 for an 
actual example). 

More than one possible solution for t o may arise. 
Because the heights of the peaks in the Q maps are 
given on an identical scale, various results for a 
component of to can be compared, weighted according 
to their corresponding peak heights. The reliability of 
different three-dimensional results for t o can be esti- 
mated according to the summed peak heights. In space 
groups in which n = 2 such a combination of results, 
which is a reinforcement of individual results, is not 
possible and only one indication for a three-dimen- 
sional (P1) or two- or one-dimensional vector (e.g. P2~, 
Pc) is obtained. 

5. A theoret ica l  and  pract ica l  e x a m p l e  in P2x/e 

In this section the practical use of formulae presented in 
§ 4 is illustrated for a specific space group, P21/c. Also, 
details of the actual calculation will be shown. Table 1 
lists the equivalent positions_for P2_i/c. Symmetry- 
related reflections are hkl, hkl, hkl and hkl. Re- 
flection data were expanded for space group P1 by 
generating an/~ki reflection for each hkl, except for 0k0 
or hOl reflections. A partial structure with correct 
orientation and incorrect position must be translated 
with respect to three symmetry elements. These 
symmetry elements are ignored during structure-factor 
calculations and DIRDIF refinement of the difference 
structure factors, but will explicitly be used in the 
calculations of the translation functions. 

Consider the positioning of the fragment with respect 
to the 2~ axis, i.e. the determination of the vector 
components X 0 and Z 0 of t o which shift the fragment to 
the correct position with respect to the 2, axis. 
Formulae (7) and (9) are now rewritten for the case of 
a 2l axis. 

Equivalent position 

-.,'. ~, +y.~-z 
-x,  -y,  -z  

X.!--)'.¢+Z 

Table 1. An example of a possible combination of 
results of  different searches in space group P21/C, 
where - t  o is the vector over which the correctly located 

fragment was misplaced 

Expression for Possible consistent 
expected maximum three-dimensional 

in Q map result 

-(2Xn, 0, 2Z 0) 
-(2X o. 2Y o, 2Zo) (Xo, ro, Zo) = t o 
-(0, 2Y o, 0) 

For the symmetry-related reflections hkl and hkl 
(7) becomes: 

for h = hkl: Fp(h) --- F;(h_k/); Fps(hkl) = Fp([zkl) exp nik 
for h = hkl: Fp(h) = Fp(hkl); Fps(hkl ) = Fp(hkl)exp nik. 

The two reflections enter (9) as the sum: 

F*(hkl) ( -1 )  k Fr(hkl) ex p [-2ni(hxq + kyq + lzq)] 

+ F*(hkl) ( -1 )  k Fr(hki) ex p [-2ni([~Xq + kyq + -lzq)]. 

(16) 

Actually, the results of (16) are summed over k and 
stored as two-dimensional Fourier coefficients G(hl) 
and will be used for the calculation of a two-dimen- 
sional search function: 

1 
Qs(xq, zq) = --~ Z G(hl) exp [-2rd(hxq + lzq)]. 

The position of the expected maximum in this Q 
function gives the components X 0 and Z 0 of the 
translation vector to. The flow chart (Fig. 1) gives a 
summary of the calculations for the 21 axis. 

The translation functions for i, 21 and c are 
calculated in parallel, i.e. after the execution of 

P2 ~ / c with 
reflections hkl 
Expand reflections: hkl --, hk-l 

/ 

Input: known l 
+pos i t ions  {rp} ~ Structure-factor calculations Fp(hkl) 

and Fp(hki) + scale factor and 
temperature-factor refinement, in P1 

Symmetry o p e ~  ,~ 

DIRDIF in P1 

Fps(hkl) and Fps(hkl) ] 
+ 

Fr(hkl) and Fr(hki) 

Coefficients for two-dimensional 
Fourier synthesis 

l 
Calculation of Q map 

1 
--+Translation t o - Z o  = ½z~ ) qo ~- Peak search 

1 
{ r 0 } contains correct x and z, 
but arbitrary position along y. 

Fig. 1. Flow chart of the TRADIR system, for a translation search 
for the 21 axis in P2~/e. 
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DIRDIF three types of coefficients are calculated 
simultaneously. After all Fourier syntheses, which give 
the Q maps, have been calculated and interpreted, the 
results for the three searches are combined. Table 1 
illustrates the combination of different indications for 
the components of t o . 

C 

IV. C - ~ ~  / 

C 

C - S ;  C10S. 

Test calculations 

As a test of the procedure a known structure was 
shifted over an arbitrary but known vector. Starting 
with the complete structure, smaller fragments were 
used also to test the performance of the translation 
function as a function of known scattering power. The 
test structure is: (Z) - S'-phenyl-S'-(p-toluenesulphon- 
amido)-2,4,6-trimethyldithiobenzoate, C 2 3 H 2 3 N O 2 3 ,  

space group P21/c, Z = 4; a = 9.223, b = 16.210, 
c = 15.282A, fl = 100.83°; abbreviated as 
THIM (Prick, 1978). Number of reflections: 2084. 
After expansion: 4060 reflections. Refined positional 
parameters were shifted over a fixed vector for each of 
the following THIM fragments. 

I. One complete molecule, excluding H atoms: 
C 2 3 N O 2 8  3. 

O 
I 

II. O - S - N - S - C - S ;  C3NO2S 3 
I I 

C C 

III. Three S atoms (relative positions may be 
available from Patterson synthesis). 

We define the fractional scattering power p 2  of a 
fragment as: p 2 =  average of IFplE/(~jfj2), ~j  = sum 
over all atoms. The calculations were performed by 
DIRDIF (Beurskens et al., 1981). 

Table 2 gives the results for the separate searches on 
every symmetry element and the combined results 
which yield a vector that is suitable for translation. 
From this table it can be concluded that for all 
fragments the correct vector is found as the combined 
vector with the highest sum of the peak maxima from 
the individual searches. Furthermore, it shows that 
indications for a component of t o which are obtained 
from a one-dimensional search (mirror or glide sym- 
metry) are very strong compared to results from a two-, 
or even more, a three-dimensional search. Especially 
for small fragments, such as fragment IV for which 
p2 < 0.10, the correct answer for to is only obtained as 
the fourth peak in the three-dimensional Q map. 
However, the first three peaks from this map can be 
excluded since they cannot combine with any of the 
indications resulting from the other Q maps. The 
computing times needed for the translation searches are 
indicated in Table 3. 

Table 2. Application of the strengthened translation functions Q(q) to some fragments of THIM 

Locat ions  and peak heights o f  main m a x i m a  in the Q maps  are listed. The true vector  is (0.20, 0.10,  0-30). 

F ragmen t  

I 

II 0.18 271 

III 0.14 221 

IV 0.09 189 

S y m m e t r y  element 

2 t axis at (O,y, 9 i at (0,0,0) c at (x,],z) 

p2 Qo qx q~ Max. qx qy q~ Max. qy Max.  - X  o 

0.26 - 400 0.40 0.60 372 -0.40 0.20 0.60 2~/4 (~:20 37-3 0.20 
0.78 0.46 84 0.40 0.32 0.10 113 0.69 15 0.23 
0.52 0.55 75 0.11 0.67 0.22 99 0.89 9 
0.46 0.71 72 0.76 0.35 0.95 95 
0.64 0.52 70 0.40 0.54 0.10 94 

0.40 0.60 315 0.40 0.20 0.60 197 
0.03 0.74 78 0.40 0.32 0.10 117 
0.53 0.55 69 0.76 0.36 0.95 112 
0.26 0.65 66 0.41 0.38 0.10 111 
0.77 0.46 66 0.04 0.36 0.25 100 

0.40 0.60 240 0.40 0.20 0.60 144 
0.53 0.54 87 0.13 0.72 0.23 104 
0.17 0.69 67 0.76 0.36 0.96 96 
0.47 0.86 54 0.26 0.47 0.22 92 
0.48 0.71 50 0.16 0.44 0.13 91 

0.40 0.60 49 0.22 0.03 0.82 113 
0.55 0.09 45 0.27 0.28 0.72 69 
0.15 0.84 42 0.64 0.43 0.08 65 
0.92 0.95 39 0.41 0.20 0.60 63 
0.94 0.77 38 0.36 0.78 0.20 61 

0.20 281 
0.72 27 
0.88 15 
0.84 8 

0.20 242 
0.72 24 
0.89 16 

Combined  vector  

- X  0 - Z  0 Max. sum 

0.1-0 0.30 1019 
0.10 0.35 525 

0.20 0.10 0.30 793 

0.20 0.10 0.30 625 

0.19 62 0.20 0.10 0.30 174 
0.40 30 0.30 0.20 0.04 140 
0.69 28 0.10 0.35 0.17 96 
0.89 25 
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Table 3. Computing time (s)for  translation searches on some fragments of  THIM for different steps of  the 
procedure on an IBM 4341, model 2 

Structure-factor 
Fragment Expansion of calculation and Tangent refinement on Calculation Q maps 

(see Table 2) reflection data normalization difference structure factors and interpretation Total 

I 9.6 71.4 120.5 40-8 242-3 
IV 9.6 51.0 49-2 41.4 151-2 

6. Further TRADIR experiences 

The TRADIR procedure has been automated and 
incorporated in the DIRDIF program system; it has 
been tested and used on a number of known (test) and 
unknown structures. In this section results are sum- 
marized. A review of the structures, with code names 
and crystal data, is given in Table 4. 

The procedure was applied in the structure de- 
termination of six unknown structures: 

in two cases the orientation of a fragment of the 
structure was determined from the Patterson synthesis 
(PENTAN and AUP 1). TRADIR was used to find the 
position of the fragment in the cell. 

in four eases a molecular fragment or some possible 
atomic positions were obtained from MULTAN (Main, 
1980) (TERMIN, TMPPA, SYDNON and NAH- 
MAL), but the complete structure could not be 
determined with routine methods. In one case (TER- 
MIN) the correct position was found by TRADIR. In 
the three remaining cases TRADIR was used to prove 
that the position was correct (translation vector equals 
null vector) and the complete structure was obtained 
after careful application of various methods. 

Approximately 12 known structures were used to 
investigate the specific properties of the procedure, four 
of which are listed in Table 4. Special attention was 
given to the following points of interest: 

TRADIR results for small fragments. The influence 
of the size of a correctly oriented fragment was tested, 
using data of HEPTA as a trial structure. Preliminary 
results have been published (Beurskens, 1981). It 
should be mentioned that the TRADIR results, given 

therein, greatly improve if the number of tangent 
refinement cycles for the difference structure factors is 
varied. By optimization of this number, smaller 
fragments (eight C atoms out of a total of 120) could 
be correctly located. 

Tests were performed also in space groups with Laue 
symmetry higher than orthorhombic (DIAMBE). The 
same lower limit of 10% for p2 for reliable answers was 
observed. 

It appeared to be possible to position a single 
medium-heavy atom in a moderately small organic 
structure (one S atom in MONOS, p2 = 0.07). 
Application of TRADIR in such a special case causes 
an enantiomorph-fixation problem (Prick, Beurskens & 
Gould, 1978), as one known atom constitutes a 
centrosymmetric model structure in P1. Consequently, 
'enantiomorph-related' peaks will also appear in the Q 
maps, although with lower densities after the enantio- 
morph-fixation procedure used in DIRDIF. 

TRADIR results if a false orientation is used as 
input. Peaks in the Q map will have very low densities 
compared to the expected maximum density. In 
addition, it will be difficult, if not impossible, to build a 
three-dimensional translation vector that is consistent 
for all searches. The successful determination of a 
combined vector is highly indicative for the cor- 
rectness of the orientation. Preliminary DIRDIF results 
(refinement of temperature factors, R values) can also 
support the supposed correctness of an orientation. It 
should be noticed that if a wrong model is used as 
input, the null vector is not present in any of the Q 
maps. 

Relative strength of different searches. A good 

Table 4. Some of the crystal structures which served as examples for the TRADIR procedure 

Known/unknown 
Code name Molecular formula structure Space group 

THIM C23Hz3NO2S3 known P2 i/C 
HEPTA C 3o H 18 known P2 i 
MONOS C tsH 16N202S known P212121 
DIAMBE C nH lzN20 known P31 
PENTAN C 14H t4N20~ unknown Pbca 
AUP 1 C iz6 Ht0sAuTP7 unknown P i 
TMPPA C20HzTF303 unknown P2_ 
TERMIN CzTHziNa unknown P1 
SYDNON CvHTN3Oz unknown P2/c 
NAHMAL C4OsHsNa unknown Pa 

Number of non-H 
Z atoms in unit cell Reference 

4 116 (a) 
4 120 (b) 
4 80 (c) 
3 48 (d) 
8 144 (e) 
8 1120 (f )  
2 52 ~) 
2 92 (h) 
8 96 (/) 
4 40 (j) 

References: (a) Prick (1978); (b) Beurskens, Beurskens & Van den Hark (1976); (c) Noordik, Beurskens, Ottenheijm, Herscheid & Tijhuis (1978); (d) 
Van der Velden & Noordik (1980); (e) Doesburg, Noordik & Beurskens (1983); ( f )  Bosman, Beurskens, Van der Velden & Noordik (1982); (g) Doesburg, 
Petit & Merckx (1982); (h) Noord~, Doesburg & Prick (1981); (i) Hasek et al. (1982); (j) Lenstra & Doesburg (1983). 
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indication of the relative strength was given by the 
determination of PENTAN. In this space group seven 
Q maps have to be calculated. Four independent 
determinations for each component of t o can be 
expected. It was noticed that the searches for the three 
glide planes gave the strongest indications for com- 
ponents X 0, Y0 and Z 0 of to. 

7. Discussion and conclusions 

From the results of applying TRADIR on both known 
and unknown structures, several important conclu- 
sions can be drawn with regard to the reliability and 
applicability of the technique. 

Symmetry considerations 

In high-symmetry space groups, in which the total 
number of symmetry operations can be larger (say 
eight), there is often only one way in which the results 
of the (seven) searches can be combined into one 
three-dimensional translation vector. A large number of 
symmetry operations implies a rapid decrease of the 
known scattering fraction upon reduction to the 
non-centrosymmetric triclinic space group. At first 
sight this seems a considerable disadvantage of the 
technique. However, the larger number of searches 
counter balances this effect. 

The correct vector is usually obtained with the 
largest probability from the one-dimensional search. 
The answer coming from the three-dimensional search 
gives smaller (correct peak height)/(lower peak height) 
ratios. Therefore, it is recommendable to give a large 
weight to the results from the one- and (slightly less) 
two-dimensional searches. Though every search (1D, 
2D, 3D) involves a shifting of a three-dimensional 
fragment in the three-dimensional DIRDIF Fourier 
space, for a 1D search (2D search), the search is 
executed in a fixed plane (along a fixed line). This 
avoids disturbance by overlapping densities from other 
(unknown) fragments, which, in a three-dimensional 
search can happen quite frequently. 

Once a consistent answer for q0 is obtained, t o can be 
calculated in a straightforward way from q0 and is now 
uniquely determined. An ambiguity concerning the sign 
of the parameter shift may arise in other types of 
translation functions (Karle, 1972), because of the high 
symmetry of the Patterson space, in which the search is 
done. In the functions presented here, no such 
ambiguity exists. 

used. Since the present function is defined in Fourier 
space, no such overlap exists. 

Other methods for locating fragments in Fourier 
space (tangent recycling, DIRDIF, or Fourier 
methods) executed in P1 are based ulaon identification 
of atoms. In TRADIR, electron-density functions are 
fitted to each other, and correlations will occur even in 
regions where no clearly separated atomic densities are 
visible and this will give a considerable contribution to 
Q(q). 

Computing time 

The computing time needed for a conventional 
Patterson translation search is strongly dependent on 
the number of symmetry elements, the number of 
vectors used in the search, and the setting of various 
program parameters. Although time limits for the 
several types of translation function are not frequently 
specified, and, if available, are hard to compare because 
of different computer properties, it is our experience 
that some Patterson-search translation functions are 
very computer-time consuming, especially if additional 
optimization is required. When comparing the times 
given in Table 3 with those for conventional programs 
running on our computer (DIRDIF, MULTAN, 
FC-step of XRAY), it is found that the time for the 
execution of TRADIR is of the same order of 
magnitude. It is, in any case, negligible compared with 
the time needed for the refinement of the structure. 

Number of reflections 

A possible reduction of the number of reflections, 
leading to a reduction of computing times, may be 
considered. In R criteria (Petit, Lenstra & Van Loock, 
1981) or in rotation functions (Tollin & Rossman, 
1966), this reduction was investigated. A threshold on 
IEI values is often applied. Obviously, in our type of 
translation functions, the tangent refinement of the 
difference structure factors plays an important role, 
and in the DIRDIF method all reflections participate in 
the procedure. 

In certain cases, however, a limit on sin 0/4 values 
can be applied to discard high-order reflections, which 
may suffer severely from errors in the model. In 
addition this can also lead to a more stable refinement 
of temperature factors and scale factors, which should 
be determined optimally to arrive at a good starting 
point for the tangent refinement. 

Compar&on with other methods 

The major drawback of the translation functions 
defined in the Patterson space is the amount of overlap 
of interatomic peaks, even if sharpened coefficients are 

Small fragments 

From the experimental results, it can be concluded 
that if at least about 10% of the total scattering power 
is known, the method will provide a reliable answer for 
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t o . If less is known, alternative answers can be 
evaluated by normal DIRDIF use. 

It appears that the procedure is not very sensitive to 
small errors in the fragment or the orientation of the 
fragment. 

Applications 

The main application of the strengthened translation 
functions is the determination of a correctly oriented 
molecular fragment in the unit cell with respect to the 
symmetry elements. 

In some applications (e.g. TMPPA) a very strong 
indication for the null vector as a solution of t o was 
obtained. It appeared that this is a very strong 
indication for the correctness of the original position of 
the molecular fragment. 

In some cases, only a very poor fragment is available 
(bad geometry, or inaccurate orientation, or an 
uninterpretable collection of peaks from an E map). In 
such cases relatively large peaks in the strengthened 
translation functions are very probable indications for 
the correctness of large parts of the model structure 
(e.g. TMPPA, TERMIN). Such 'model verification' 
may be followed by DIRDIF in order to modify the 
model (small atomic shifts, removal of some atoms); 
thereafter DIRDIF will usually lead to a rapid 
development of the structure. 

In principle, the TRADIR procedure can also be 
used to position two independent fragments in space 
group PI: Fps [in (9)] is simply to be replaced by the 
calculated structure factors for the second fragment; 
the interpretation of the Q map is straightforward. 
Alternatively, two DIRDIF results can be convoluted. 

The application of the strengthened translation 
functions on protein structure analysis has not been 
tested so far. Some preliminary tests of the application 
of DIRDIF on protein molecules are in progress 
(Parthasarathi & Beurskens, 1982). If satisfactory 
results are obtained, TRADIR will be tested on its 
applicability to protein structures. 

This work (HMD) was supported by the Nether- 
lands Foundation for Chemical Research (SON) with 
financial aid from the Netherlands Organization of 
Pure Research (ZWO). We wish to thank R. C. 
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